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Abstract: To lower the sampling rate in a spread spectrum communication system, compressive sampling process is 

applied to take out the received signal. This may cause a decrease within the power consumption or the producing value of 

wireless receiver’s using spread spectrum technology. The most novelty of this paper is that the discovery that in spread 

spectrum systems it's potential to use compressive sensing with a far easier hardware design than in alternative systems, 

creating the implementation easier and more energy economical. Our theoretical work is illustrated with a numerical 

experiment using the IEEE 802.15.4 standard's 2.4 GHz band specification. The numerical results support our theoretical 

findings and indicate that compressive sensing could also be used with success in spread spectrum communication 

systems. The results obtained here may also be applicable in alternative spread spectrum technologies, like Code Division 

Multiple Access (CDMA) systems. 
 

Index Terms: Compressive Sensing, Direct Sequence Spread Spectrum communication System. 

 

I. INTRODUCTION 
 

The idea of compressive sensing is attracting a lot of and a 

lot of attention within the signal process community. 

Wherever the classical Shannon-Nyquist sampling theorem 

needs a symbol to be sampled at double its signal 

information rate, compressive sensing samples the signal at 

its data rate, which can be a lot of lower. Compressive 

sensing is employed to reconstruct a symbol to a full 

Nyquist rate illustration, however if solely analysis 

regarding data within the signal is desired, compressive 

signal process is best suited. Compressive signal process is 

employed once analysis regarding data during a signal is of 

interest, instead of the reconstruction of the signal itself. 

Compressive sensing and compressive signal process 

samples the signal employing a sampling theme with usually 

a randomized structure and then exploits sparsity in the 

signal. In DSSS sparseness is within the choice of a code 

used for transmission of a given data sequence. During this 

work, we tend to show however compressive sparseness 

within the signal to alter sub sampling. In DSSS systems 

signal process could also be applied to a spread spectrum 

receiver to lower the rate at the receiver. This 

could lower the general energy consumption of the device 

and/or lower the value of the Analog to 

Digital device (ADC). To show this take into account the 

following: This work relies on a symbol model employed 

in the IEEE 802.15.4 standard within which a baseband 

signal with a Nyquist frequency of 200kHz should be 

sampled.  

To indicate the benefit of lowering the rate, we tend to 

compare 2 ADCs from Analog Devices: The AD7819 and 

also theAD7813. The AD7819 is an 8-bit ADC with a most 

throughput   of two hundred kilo samples per second, 

whereas the AD7813 is an 8- or 10-bit ADC with a most 

throughput of four hundred kilo samples per second. We  

 
 

tend to aware that 400 kilo samples per second is that the 

Nyquist rate of the system and also the sampling rate should  

be beyond this to suits the Shannon-Nyquist sampling 

theorem. However, we tend to use these 2 ADCs as they are 

virtually identical in each side apart from the sampling rate, 

creating them good for comparison. In IEEE 802.15.4 

compliant receivers, an ADC like AD7813should be used to 

suits Shannon-Nyquist, however if compressive signal 

process is ready to lower the sampling rate by an element of 

2, the AD7819 could also be used instead. These two 

specific ADCs use identical quantity of power thus there are 

not any energy savings, however wherever the AD7813 

prices 2.98$, the AD7819 solely prices 2.29$. 

 During this work, we tend to apply compressive signal 

process to a general DSSS system. We tend to show that in a 

spread spectrum system it is doable to use merely a 

continual version of the matched filter employed in classic 

receivers rather than employing a difficult filter structure to 

accumulate random measurements. This greatly simplifies 

the implementation and makes compressive sensing 

possible for implementation in spread spectrum wireless 

receiver systems. Our approach is not restricted to DSSS 

however can also be applied in alternative spectrum 

technologies, like CDMA. 

One major obstacle in applying compressive sensing to any 

wireless system is that the presence of noise folding, that 

happens as a result of the noise is not measuring noise; 

however noise additional before measure the signal. This 

severely impacts the receiver performance that is 

additionally evident in our numerical experiments. 
 

II. COMPRESSIVE SENSING 
 

CS is a novel sampling scheme, developed to lower the 

number of samples required to obtain some desired signal. 
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At the heart of CS is the linear sampling scheme, called the 

measurement matrix. In classic receivers the measurement 

matrix Θ may be modeled as the identity matrix, such that x 

is sampled at the chip rate of each channel (I and Q). This 

measurement matrix is then responsible for mapping the 

N-dimensional signal x to a M dimensional signal. 

Normally this would make it impossible to recover the 

original signal, but under the assumption that x is sparse in 

some basis; it is possible to reconstruct the original signal 

from the sampled, M-dimensional signal y. Before 

explaining the reconstruction algorithm, we return to the 

measurement matrix and introduce a new measurement 

scheme. This new measurement scheme is easier to 

implement, but performs almost identically for spread 

spectrum systems. We call this a Compressive Spread 

Spectrum (CSS) measurement matrix. 

 

III. CLASSIC TRANSMITTER STRUCTURE 
 

In each the transmitter and the receiver structure we tend to 

treat the signal symbol-by-symbol, where each symbol may 

be one little bit of info or a block of bits. Let Bk ϵ {±1}
 N×1

 be 

a binary vector, signifying the symbol to be transmitted and 

consisting of N information bits. Currently outline a k
th

 

binary pseudo-random noise (PRN) sequence as ck 

ϵ{±1}
C×1

.These two binary vectors square measure the 

distinct equivalents of an information signal and a PRN 

signal, bk(t) and ck(t), severally as shown in Fig.1 and 

outlined as:  

   (1) 
 

     (2) 

Where and  are the bit and chip duration 

respectively, and .we define 
   

    ( )            
           
               

                                        (3)                                                                                                                   

 
 

When multiplied, they form the spread spectrum data signal,  

  ( )    ( )  ( )        . The notation employed in 

the above might in some cases be simplified, because the 

choice of a PRN sequence may well be implemented as a 

mapping from one bit or a block of bits on to a given 

sequence of chips, as done in e.g. IEEE 802.15.4.In the 

following, the signal model we tend to outline relies on the 

IEEE 802.15.4 standard’s 2.4 gigahertz band specification. 

This suggests the encryption using DSSS could also be 

written as a matrix vector product, with M = 2
N
 data signals: 

dk(t)=  where                                       (4) 
 

                       (5) 

Where Ψ(t) may be a dictionary of  data signals and 

αk∈{0,1}
M×1

 may be a distributed  vector with just one 

non-zero entry, specifically the entry that selects a given 

PRN sequence from the dictionary. It may also be 

considered a symbol vector because it corresponds to the 

kth symbol being transmitted. The sparsity of αk is what 

permits us to use compressive sensing for reception. The 

sparsity of the signal lies during which PRN sequence is 

chosen for transmission. 

The IEEE 802.15.4 2.4GHz band specification relies on 

QPSK and thus the output sequence is break up, in order 

that even-indexed chips in dk(t) are transmitted within the in 

section(in-phase) path and odd-indexed chips within the 

construction section(quadrature-phase) path. Within the 

following we tend to solely state the equations for the in 

section path; however similar expressions could also be 

derived for the construction section path. The resulting data 

signals are used to modulate some pulse shape function, g 

(t): 

(t) =   where                                          (6) 

 

          (7) 
 

Here the dictionary matrix has been recast into an in-phase 

version, with pulse form enclosed. Notice that g(t) here and 

as portrayed in Fig.1 is assumed to be a half-sine pulse, that 

is the pulse shaping  function  employed in IEEE802.15.4. 

This pulse form has restricted to support within the time 

domain that is not true for e.g. a raised cosine pulse form. 

The equations during this work are outlined for the half-sine 

pulse form; however they are simply modified to use to 

different pulse form functions. 

 

IV. NYQUIST SAMPLING RECEIVER 

STRUCTURE 

 

Before introducing our compressive sensing receiver 

structure, we have a tendency to first define a classic 

Nyquist sampling receiver structure. At the receiver, the 

received signal is 

 
  ( )        ( )                                       (8) 

 

Where n(t) is additive white Gaussian noise. The in-phase 

Associate Quadrature-phase analog signals sampled 

consistent with the chip rate employing a matched filter to 

the pulse shape used at the transmitter and an ADC. Here, 

we have a tendency to assume a coherent receiver with good 

synchronization, performed before information coding 

using e.g. a pilot sequence. The sampling could also be 

defined by employing a measurement matrix, Θ1(t):are 
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Fig.1. Transmitter and receiver structure for QPSK modulation/demodulation. The items drawn using dotted lines are 

hardware components that must be modified to enable compressive sensing.   
               

  
 ( )  ∫   ( )  

 ( )  
(   )  
   

         (9) 
 

  ( )  

[
 
 
 
 
  

( )

  ( )
 

    ( )]
 
 
 
 

   ( )   (     )         (10) 

 

The measurement matrix is denoted Θ1 as a result of it 

samples each Tc/1, i.e. at nyquist sampling rate.  

This means that for each received symbol 2C samples 

should be taken for the in-phase and quadrature-phase 

signals in total. These samples then form the received signal 

vectors, Yk
I
 and Yk

Q
 ,are used to demodulate the signal and 

find an estimate of the transmitted symbol, represented as 

αk, employing a method of least squares estimator.  

Thanks to  the easy style of this signaling scheme and 

therefore the matched filter, it is attainable to perform the 

reception method as a method of least squares estimation 

with straightforward strictly binary versions of the analog 

dictionary and measurement matrices, ψ
I
(t),ψ

Q
(t) andϴ1(t) 

respectively. 

outline  and outline M signal candidates as 

 , wherever Θ1= I is now 

simply  the C×C unit matrix and Ψ
I∈{±1} 

C×M
 and 

Ψ
Q∈ {±1}

C×M
 are the discrete in-phase and 

quadrature-phase dictionary  matrices with every entry 

signifying either a positive (1) or negative (−1) pulse within 

the analog versions of the dictionary matrices. With these 

definitions so as the least amount squares estimate will be 

found as: 
 

              (11) 
 

Where (•) H denotes Hermitian transpose, is that the 

estimate of the index within the αk vector that is non-zero, 

i.e. the index comparable to the symbol that has been 

transmitted. 
 

V. COMPRESSIVE SAMPLING RECEIVER 

STRUCTURE 
 

In hardware compressive sensing sampling structures, such 

as the Random Demodulator, a PRN sequence is mixed with  

the received signal followed by low-pass filtering. 

Because of the presence of a PRN sequence in a spread 

spectrum transmitter, which spreads the information signal, 

a compressive sensing-enabled receiver might just use a 

recurrent version of its matched filter, subsample the 

received signal and still extract the data. Before sampling, 

the matched filter should be changed to contain not solely 

one chip pulse form however as several chip pulse shapes as 

shall be contained per sample. This received signal vector 

might then be written as: 
 

                                    (12) 

 

      (13) 
 

Here every value of ℓ = 0, 1, …..,L signifies a set of 

chips because of the sub sampling wherever L = Ck is that 

the range of samples taken per symbol. κ =  ∈ [0, 1] is the 

under sampling ratio in the compressive sensing system and 

signifies the magnitude relation between taken samples and 

Nyquist samples. During this work we tend to limit 

ourselves to eventualities wherever 1/k is an integer 

number, i.e., solely an integer number of Nyquist 

samples are compressed along into one sample.  

To verify that employment of an extra PRN sequence at the 

receiver makes no sense, we tend to might inspect the end 

result of the sub sampling ADC in Fig. 1. Assuming a 

noise-free setting (n(t) = 0), the end result becomes: 
 

 

 
 

 
 

                                                                    (14) 
 

 Notice that the up and down-conversions are assumed good 

and PPRN (t) may be a new PRN sequence, added at the 

receiver as is done within the Random Demodulator 
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receiver structure. The symbol c′ denotes a chip picked get 

into dk(t) at the transmitter and used to avoid confusion with 

c, the chips added along into a sample at the receiver. The 

special classification with Tc in reference to bk (t) and ck (t) 

is to pick out the chips within the in-phase path solely. As a 

result of everything is multiplicative, it is seen that ck(t + n 

Tc) and PPRN(t) are synchronized and have a similar chip 

rate, i.e. they will be viewed as one PRN sequence. It 

follows that the multiplication of a PRN sequence at the 

receiver makes no sense here. 

 Because we have a tendency to demodulate a signal, that is 

equivalent to a classification problem, it is not necessary for 

us to reconstruct the total original signal as is done in 

compressive sensing. Instead we have a tendency to use the 

recently introduced construct of compressive signal process 

to perform classification within the compressed domain. By 

classification, we have a tendency to mean to classify that of 

the signal candidates within the dictionary Ψ
I 
and Ψ

Q
 has 

been transmitted. This does not need reconstruction of the 

signal itself and should thus be finished less procedure 

quality by using compressive signal process, instead of 

classic compressive sensing algorithms, that reconstruct the 

total signal.  

To extract the data at the receiver using the 2 sub-sampled 

chip sequences,  and , the classification rule (11) is 

employed once more with Θ1/κ∈ {0, 1}
L×C

 rather than 

Θ1∈{0,1}
C×C

. In [3] a pre-whitening matrix, W is 

introduced to counter noise coloring by the activity matrix. 

However, as our projected activity matrix, Θ1/κ, has no 

overlapping rows, the noise remains white in our case. This 

pre-whitening matrix is thus not necessary here, but if e.g. a 

mathematician or Bernoulli measurement matrix is 

employed instead, it must be included. 
 

VI. NUMERICAL RESULTS 
 

To show the performance of our estimated receiver 

structure, we have performed a numerical experiment within 

which we have a tendency to compare the Bit Error Rate 

(BER) of a classical receiver to it of a compressive 

sensing-enabled receiver. This can be done for a variety of 

Signal-to-Noise-Ratio (SNR) levels. The system used for 

this experiment is our MATLAB implementation of the 

physical layer of the IEEE802.15.4 2450 MHz OQPSK 

radio band specification. Each block of 4 bits is mapped into 

one among 32 binary chip sequences. The chip sequence is 

then modulated using Offset Quadrature Phase Shift Keying 

(OQPSK).  
 

 

Fig.2. The BER versus Eb/N0 for a classical receiver 

implementation using least squares compared to that of a 

compressive sensing enabled receiver with κ = 0.5. The full 

black curve signifies theoretical BER per Eb/N0 for 

coherent MFSK and the dashed curve is theoretical BER per 

Eb/N0 for non-coherent MFSK. 
 

This standard has been chosen due to its widespread use, 

having been deployed already in several applications round 

the world and since it is a legendary standard to several 

scientists and engineers. The experiment is repeated for a 

variety of SNRs or a lot of specifically energy per bit per 

noise spectral density (Eb/N0).The noise is added in a 

bandwidth corresponding to that of the baseband signal, 

i.e.,2 MHz Our experiment is conducted by sending 

randomly generated data packets of length 127 × 8 = 1016 

bits every (the maximum size of an IEEE 802.15.4 data  

packet). For each of 2 tested ways and for every Eb/N0 

level, bits are transmitted till at least1000 bits are received 

in error.  

To validate the implementation of the compressive sensing 

framework, we have conducted a numerical experiment 

within which we have a tendency to add a constant to the 

transmitted signal, instead of additive white Gaussian noise 

(AWGN). The results for each the classical method of least 

squares and the compressive Sensing implementation 

follow the expected results as found through mathematical 

calculations, thereby indicating that the implementation 

performs obviously. 

 The results of the BER versus Eb/N0 experiment with 

AWGN are shown in Fig. 2. Additionally shown that the 

theoretical BER versus Eb/N0 for coherent MFSK, 

numerically evaluated 
 

         (15)  

 

We have additionally enclosed the theoretical curve for 

non-coherent MFSK, because it is expressed within 

the IEEE 802.15.4: 
 

                 (16) 

 

The classical implementation does not follow the 

theoretical bound specifically as a result the PRN sequences 

are not orthogonal and because of the short code lengths. 

For κ = 0.5 the compressive sensing receiver performs 

worse than a classical receiver by ≈ 4-5dB. 

 

VII. CONCLUSION 
 

We have shown that compressive sensing permits sub 

sampling of a DSSS signal. This has been demonstrated by 

means that of IEEE 802.15.4 2.4GHz OQPSK signals, that 

we have successfully sub sampled with half the Nyquist rate. 

This sub-sampling could cause a decrease in energy 

consumption or a lowering of the producing value. The 

penalty is that the expected decrease in performance 
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because of noise folding. This penalty has not been more 

treated during this work.  

An under sampling of k=0.5 is not a large under sampling 

rate. This is because of the impact of noise folding and since 

the IEEE 802.15.4 standard spread spectrum codes are 

solely 16 chips long in every channel (I and Q). For 

additional complicated spread  spectrum systems with 

longer chipping sequences (and thus additional potential 

sparsity) and multiple users and if quantization is enclosed 

within the signal model, we have a tendency to powerfully 

believe there are  cases wherever the sampling rate may be 

decreased, whereas still attaining an equivalent or higher 

BER performance than a classical receiver.  

The main results of this paper is that the observation that in 

a spread spectrum receiver it is possible to use compressive 

sensing without generating a PRN sequence and 

compounding it with the received signal. This can be 

achievable as a result of a spread spectrum signal has 

already been spread by the transmitter. 
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